Close Menu
Beverly Hills Examiner

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    “Most Musically Inventive Voice in All of Pop

    June 12, 2025

    Stocks scoot higher on low inflation numbers but Boeing sinks after fatal Air India disaster

    June 12, 2025

    Illegal Immigrants Didn’t Cross Border For The Brisket At Buc-ee’s

    June 12, 2025
    Facebook X (Twitter) Instagram
    Beverly Hills Examiner
    • Home
    • US News
    • Politics
    • Business
    • Science
    • Technology
    • Lifestyle
    • Music
    • Television
    • Film
    • Books
    • Contact
      • About
      • Amazon Disclaimer
      • DMCA / Copyrights Disclaimer
      • Terms and Conditions
      • Privacy Policy
    Beverly Hills Examiner
    Home»Science»Heated Debate Persists over the Origins of Complex Cells
    Science

    Heated Debate Persists over the Origins of Complex Cells

    By AdminJune 14, 2022
    Facebook Twitter Pinterest LinkedIn WhatsApp Email Reddit Telegram
    Heated Debate Persists over the Origins of Complex Cells


    For billions of years after the origin of life, the only living things on Earth were tiny, primitive cells resembling today’s bacteria. But then, more than 1.5 billion years ago, something remarkable happened: One of those primitive cells, belonging to a group known as the archaea, swallowed another, different one — a bacterium.

    Instead of being digested, the bacterium took up permanent residence within the other organism as what biologists call an endosymbiont. Eventually, it integrated fully into its archaeal host cell, becoming what we know today as the mitochondrion, the crucial energy-producing component of the cell.

    Its acquisition has long been viewed as the key step in what is arguably the most important evolutionary leap since the origin of life itself: the transition from early primitive cells, or prokaryotes, to the more sophisticated cells of higher organisms, or eukaryotes, including ourselves.

    It’s a neat story you’ll find in most biology textbooks — but is it quite that simple? In the last few years, new evidence has challenged the notion that mitochondria played a seminal role in this transition. Researchers sequencing the genomes of modern-day relatives of the first eukaryotes have found many unexpected genes that don’t seem to come from either the host or the endosymbiont. And that, some scientists suggest, might mean that the evolution of the first eukaryotes involved more than two partners and happened more gradually than suspected.

    Others don’t see a reason yet to abandon the theory that the acquisition of the mitochondrion was the spark that ignited the rapid evolution of eukaryotes — giving rise, eons later, to plants, animals, vertebrates, ourselves. Fresh evidence from genomics and cell biology may help resolve the debate, while also pointing to knowledge gaps that still need to be filled to understand one of the foundational events in our own ancestry, the origin of complex cells.

    A Genetic Enigma

    Uncertainties arose when mystery genes turned up in the last decade when researchers including Toni Gabaldón, an evolutionary genomicist at the Barcelona Supercomputing Centre, and his colleagues took advantage of today’s cheap gene sequencing technology to explore the genomes of a wide range of eukaryotes, including several obscure, primitive, modern-day relatives of early eukaryotes.

    They expected to find genes whose lineage traced back to either the archaeal host or the mitochondrial ancestor, a member of a group called the alphaproteobacteria. But to their surprise, the scientists also found genes that seemed to come from a wide range of other bacteria. Gabaldón and colleagues hypothesized that the cellular ancestor of eukaryotes had acquired the genes from a variety of partners. Those partners could have been additional endosymbionts that were later lost, or free-living bacteria that passed one or a few of their genes to the ancestral host in a common process called horizontal gene transfer. Either way, the tango that led to eukaryotes involved more than two dancers, they suggested.

    “It is clear now that there are additional contributions from additional partners,” says Gabaldón, who wrote about the early evolution of eukaryotes in the 2021 Annual Review of Microbiology.

    It’s tough to know exactly where those ancient foreign genes came from because so much time has elapsed. But there are many more recent, looser endosymbioses where the origin of foreign genes is easier to identify, says John McCutcheon, an evolutionary cell biologist at Arizona State University in Tempe who wrote about endosymbiont evolution in the 2021 Annual Review of Cell and Developmental Biology. Studying these might, by analogy, give us a shot at understanding how mitochondria and the first eukaryotes could have evolved, he says.

    A prime example is a roughly 100-million-year-old partnership between insects called mealybugs and two bacterial endosymbionts, one nested inside the other in the mealybugs’ cells. (The endosymbionts make essential amino acids that the mealybug can’t get from its diet.) Based on a genomic analysis, McCutcheon and his colleagues found that the mealybugs’ metabolic pathways are now a mosaic made up of genes that originated with the bugs themselves, came in with their endosymbionts or were picked up by horizontal transfer from other microbes in the environment. To make this work, McCutcheon’s team showed, mealybug cells had to evolve an apparatus that transports proteins to and fro between what were once independent organisms — allowing ones from the mealybug cell nucleus to journey across two sets of endosymbiont membranes for use by the innermost endosymbiont

    Something similar occurs in a single-celled, amoeba-like eukaryote called Paulinella. Paulinella has an endosymbiont, engulfed tens of millions of years ago, that allows it to harvest energy from sunlight without the chloroplast organelles that usually power photosynthesis. Eva Nowack, who leads a lab at the University of Dusseldorf in Germany, discovered that Paulinellla’s genome now contains genes from the endosymbiont along with others that were acquired through horizontal gene transfer.

    Remarkably, the endosymbiont imports more than 400 proteins from the host nucleus, so it also must have evolved a complicated protein transport system like the mealybugs. “That’s quite exciting,” says molecular evolutionist Andrew Roger, who studies the evolution of organelles at Dalhousie University in Halifax, Canada, because it suggests that evolving these transport systems anew isn’t as difficult as previously thought.

    These examples illustrate how endosymbionts become integrated with their hosts and suggest that horizontal gene transfers from various sources could have been quite frequent early in the evolution of eukaryotes, too. “It doesn’t show that is what happened in the formation of the mitochondria, but it shows that it’s possible,” says McCutcheon.

    Others agree. “There’s lots of strong evidence for horizontal gene transfer in eukaryotes, so there’s really no reason to say that it couldn’t have happened during that period of the prokaryote-eukaryote transition. In fact, it almost certainly did happen,” Roger says.

    Shopping for genes

    The implication is that the ancient host could have gradually acquired eukaryotic traits one at a time, like a shopper picking up items in a shopping bag, via horizontal gene transfers or by gobbling a series of endosymbionts, explains John Archibald, a comparative genomicist at Dalhousie University. Some of those newly acquired genes could have been useful to the host as it evolved the rest of the machinery found in modern eukaryotic cells.

    If so, by the time the ancient host engulfed the precursor of mitochondria, it would have already possessed many eukaryotic features, perhaps including some organelles, the internal compartments surrounded by membranes — meaning that mitochondria would have been not the main driver of eukaryotic evolution but a late addition.

    But despite all the evidence supporting a gradualist hypothesis for the evolution of eukaryotes, there are some reasons for doubt. The first is that these more recent endosymbioses may not tell us much about what happened during the origin of eukaryotes — after all, in these cases the modern host cells were already eukaryotes. “These examples tell us how easy it is, once you have a eukaryotic cell, to establish intracellular endosymbioses,” says Bill Martin, an evolutionary biologist who studies the origins of eukaryotes at the University of Dusseldorf. But eukaryotes already have all the intracellular machinery needed to engulf another cell. It’s not at all clear that the ancestral proto-eukaryote had that ability, Martin says — which would make the barrier to that first endosymbiosis much higher. That, to him, argues against a gradual evolution of the eukaryotic cell.

    Trichomonas vaginalis, Giardia lamblia and Trypanosoma brucei (left to right) are all considered primitive eukaryotes. Biologists sequencing the genomes of these and other unusual eukaryotes have found some unexpected genes that do not appear to have come from either the original eukaryotic host cell or its mitochondrial symbiont. That may mean that other partner species also contributed to the origin of eukaryotes. Credit: CDC/ Joe Miller (left); CDC/ Dr. Stan Erlandsen (middle); Gull Lab, Sir William Dunn School of Pathology (CC BY 4.0) (right)

    In fact, some evidence suggests that key eukaryotic features were acquired all at once, rather than gradually. All eukaryotes have the exact same set of organelles familiar to anyone who has studied cell biology: nucleus, nucleolus, ribosomes, rough and smooth endoplasmic reticulum, Golgi apparatus, cytoskeleton, lysosome and centriole. (Plants and a few other photosynthetic eukaryotes have one extra, the chloroplast, which everyone agrees arose through a separate endosymbiosis.) That strongly suggests the other cellular components all originated at about the same time — if they didn’t, different eukaryotic lineages ought to have different mixes of organelles, says Jennifer Lippincott-Schwartz, a cell biologist at the Howard Hughes Medical Institute’s Janelia Research Campus in Virginia.

    Some biochemical evidence points that way, too. The ancestral host and endosymbiont belonged to different branches of the tree of life — archaea and bacteria, respectively — that use different molecules to build their membranes. None of the membranes of eukaryotic organelles are exclusively archaeal in structure, so it’s unlikely they came from the ancestral host cell. Instead, this suggests that the archaeal host was a relatively simple cell that evolved its other organelles only after the arrival of the mitochondrial ancestor.

    But what about all those mysterious foreign genes recently found in the eukaryotic family tree? There’s another possible explanation, Martin says. All those foreign genes could have arrived in a single package with the endosymbiont that evolved into the mitochondrion. Later — in the 1.5 billion years following that event — those genes could have been scattered among many bacterial groups, courtesy of the ease with which bacteria swap genes to and fro. That would give the erroneous impression that multiple partners contributed genes to the early eukaryote.

    Moreover, Martin adds, if the gradualist idea is correct, different lineages of eukaryotes should have fundamentally and measurably different collections of genes, but he has shown they do not. “There is no evidence to suggest that there were serial acquisitions,” Martin says. “A single acquisition of mitochondria at the origin of eukaryotes is enough.”

    The debate is unlikely to be settled soon. “It’s very hard to find data that’s going to make us clearly distinguish between these alternatives,” says Roger. But if further studies of obscure, primitive eukaryotes revealed some that have only a subset of eukaryotic organelles, this could lend weight to the gradualist hypothesis. On the other hand, if evidence was found for a way that a simple archaeal cell could acquire an endosymbiont, that would make the “mitochondria early” hypothesis more plausible.

    “People are drawn to big questions, and the harder they are to answer, the more people are drawn to them and debate them,” says Archibald. “That’s what makes it fun.”

    This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.



    Original Source Link

    Share. Facebook Twitter Pinterest LinkedIn WhatsApp Email Reddit Telegram
    Previous ArticleLady Gaga Joins Joaquin Phoenix in DC Sequel – The Hollywood Reporter
    Next Article Electric Last Mile Solutions to file for bankruptcy – TechCrunch

    RELATED POSTS

    Congress Demands Answers on Data Privacy Ahead of 23andMe Sale

    June 12, 2025

    Planned NIH Cuts Threaten Americans’ Health, Senators Charge in Tense Hearing

    June 12, 2025

    The discovery that cancer hacks nerves could lead to fairer treatments

    June 11, 2025

    A Political Battle Is Brewing Over Data Centers

    June 11, 2025

    Gorilla Gourmets Are Actually Truffle Hunting

    June 10, 2025

    Starlink satellites are leaking radio signals that may ruin astronomy

    June 10, 2025
    latest posts

    “Most Musically Inventive Voice in All of Pop

    Bruce Springsteen has paid tribute to the late Brian Wilson in a new statement praising…

    Stocks scoot higher on low inflation numbers but Boeing sinks after fatal Air India disaster

    June 12, 2025

    Illegal Immigrants Didn’t Cross Border For The Brisket At Buc-ee’s

    June 12, 2025

    House hearing erupts as Plaskett demands Bessent stop interrupting

    June 12, 2025

    Tesla sues former Optimus engineer over alleged trade secret theft

    June 12, 2025

    Congress Demands Answers on Data Privacy Ahead of 23andMe Sale

    June 12, 2025

    10 Heavy Metal Cover Songs That Were Way Better Than The Original

    June 12, 2025
    Categories
    • Books (573)
    • Business (5,477)
    • Film (5,414)
    • Lifestyle (3,519)
    • Music (5,468)
    • Politics (5,464)
    • Science (4,825)
    • Technology (5,411)
    • Television (5,088)
    • Uncategorized (1)
    • US News (5,465)
    popular posts

    Sick suburban solidarity in two unappreciated John Waters gems

    Sick suburban solidarity in two unappreciated John Waters gems About Little White Lies Little White…

    Beyonce Features on Her Albums: Full List – Billboard

    July 29, 2022

    A Link to News Site Meduza Can (Technically) Land You in Russian Prison

    January 29, 2023

    Dan Crenshaw Crumbles And Babbles NRA Talking Points When As For Guns Solution

    May 29, 2022
    Archives
    Browse By Category
    • Books (573)
    • Business (5,477)
    • Film (5,414)
    • Lifestyle (3,519)
    • Music (5,468)
    • Politics (5,464)
    • Science (4,825)
    • Technology (5,411)
    • Television (5,088)
    • Uncategorized (1)
    • US News (5,465)
    About Us

    We are a creativity led international team with a digital soul. Our work is a custom built by the storytellers and strategists with a flair for exploiting the latest advancements in media and technology.

    Most of all, we stand behind our ideas and believe in creativity as the most powerful force in business.

    What makes us Different

    We care. We collaborate. We do great work. And we do it with a smile, because we’re pretty damn excited to do what we do. If you would like details on what else we can do visit out Contact page.

    Our Picks

    Congress Demands Answers on Data Privacy Ahead of 23andMe Sale

    June 12, 2025

    10 Heavy Metal Cover Songs That Were Way Better Than The Original

    June 12, 2025

    ‘Bachelorette’ Michelle Young Gets Married In Minnesota

    June 12, 2025
    © 2025 Beverly Hills Examiner. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms & Conditions and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT