Close Menu
Beverly Hills Examiner

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    New Book Details Orange County Punk Scene

    May 13, 2025

    Microsoft began its largest mass layoff in years after its CFO said the company is ‘reducing layers with fewer managers’

    May 13, 2025

    Stocks Soar After Temporary Tariff Reduction Between U.S., China

    May 13, 2025
    Facebook X (Twitter) Instagram
    Beverly Hills Examiner
    • Home
    • US News
    • Politics
    • Business
    • Science
    • Technology
    • Lifestyle
    • Music
    • Television
    • Film
    • Books
    • Contact
      • About
      • Amazon Disclaimer
      • DMCA / Copyrights Disclaimer
      • Terms and Conditions
      • Privacy Policy
    Beverly Hills Examiner
    Home»Science»Designer neurons offer new hope for treatment of Parkinson’s disease
    Science

    Designer neurons offer new hope for treatment of Parkinson’s disease

    By AdminMay 12, 2022
    Facebook Twitter Pinterest LinkedIn WhatsApp Email Reddit Telegram
    Designer neurons offer new hope for treatment of Parkinson’s disease


    Neurodegenerative diseases damage and destroy neurons, ravaging both mental and physical health. Parkinson’s disease, which affects over 10 million people worldwide, is no exception. The most obvious symptoms of Parkinson’s disease arise after the illness damages a specific class of neuron located in the midbrain. The effect is to rob the brain of dopamine—a key neurotransmitter produced by the affected neurons.

    In new research, Jeffrey Kordower and his colleagues describe a process for converting non-neuronal cells into functioning neurons able to take up residence in the brain, send out their fibrous branches across neural tissue, form synapses, dispense dopamine and restore capacities undermined by Parkinson’s destruction of dopaminergic cells.

    The current proof-of-concept study reveals that one group of experimentally engineered cells performs optimally in terms of survival, growth, neural connectivity, and dopamine production, when implanted in the brains of rats. The study demonstrates that the result of such neural grafts is to effectively reverse motor symptoms due to Parkinson’s disease.

    Stem cell replacement therapy represents a radical new strategy for the treatment of Parkinson’s and other neurodegenerative diseases. The futuristic approach will soon be put to the test in the first of its kind clinical trial, in a specific population of Parkinson’s disease sufferers, bearing a mutation in the gene parkin. The trial will be conducted at various locations, including the Barrow Neurological Institute in Phoenix, with Kordower as principal investigator.

    The work is supported through a grant from the Michael J. Fox Foundation.

    “We cannot be more excited by the opportunity to help individuals who suffer from this genetic form of Parkinson’s disease, but the lessons learned from this trial will also directly impact patients who suffer from sporadic, or non-genetic forms of this disease,” Kordower says.

    Kordower directs the ASU-Banner Neurodegenerative Disease Research Center at Arizona State University and is the Charlene and J. Orin Edson Distinguished Director at the Biodesign Institute. The new study describes in detail the experimental preparation of stem cells suitable for implantation to reverse the effects of Parkinson’s disease.

    The research appears in the current issue of the npj journal Nature Regenerative Medicine.

    New perspectives on Parkinson’s disease

    You don’t have to be a neuroscientist to identify a neuron. Such cells, with their branching arbor of axons and dendrites are instantly recognizable and look like no other cell type in the body. Through their electrical impulses, they exert meticulous control over everything from heart rate to speech. Neurons are also the repository of our hopes and anxieties, the source of our individual identity.

    Degeneration and loss of dopaminergic neurons causes the physical symptoms of rigidity, tremor, and postural instability, which characterize Parkinson’s disease. Additional effects of Parkinson’s disease can include depression, anxiety, memory deficit, hallucinations and dementia.

    Due to an aging population, humanity is facing a mounting crisis of Parkinson’s disease cases, with numbers expected to swell to more than 14 million globally by 2040. Current therapies, which include use of the drug L-DOPA, are only able to address some of the motor symptoms of the disease and may produce serious, often intolerable side effects after 5-10 years of use.

    There is no existing treatment capable of reversing Parkinson’s disease or halting its pitiless advance. Far-sighted innovations to address this pending emergency are desperately needed.

    A (pluri) potent weapon against Parkinson’s

    Despite the intuitive appeal of simply replacing dead or damaged cells to treat neurodegenerative disease, the challenges for successfully implanting viable neurons to restore function are formidable. Many technical hurdles had to be overcome before researchers, including Kordower, could begin achieving positive results, using a class of cells known as stem cells.

    The interest in stem cells as an attractive therapy for a range of diseases rapidly gained momentum after 2012, when John B. Gurdon and Shinya Yamanaka shared the Nobel Prize for their breakthrough in stem cell research. They showed that mature cells can be reprogrammed, making them “pluripotent”—or capable of differentiating into any cell type in the body.

    These pluripotent stem cells are functionally equivalent to fetal stem cells, which flourish during embryonic development, migrating to their place of residence and developing into heart, nerve, lung, and other cell types, in one of the most remarkable transformations in nature.

    Neural alchemy

    Adult stem cells come in two varieties. One type can be found in fully developed tissues like bone marrow, liver, and skin.  These stem cells are few in number and generally develop into the type of cells belonging to the tissue they are derived from.

    The second kind of adult stem cells (and the focus of this study) are known as induced pluripotent stem cells (iPSCs). The technique for producing the iPSCs used in the study occurs in two phases. In a way, the cells are induced to time travel, initially, in a backward and then a forward direction.

    First, adult blood cells are treated with specific reprogramming factors that cause them to revert to embryonic stem cells. The second phase treats these embryonic stem cells with additional factors, causing them to differentiate into the desired target cells—dopamine-producing neurons.

    “The major finding in the in the present paper is that the timing in which you give the second set of factors is critical,” Kordower says.  “If you treat and culture them for 17 days, and then stop their divisions and differentiate them, that works best.”

    Pitch perfect neurons

    The study’s experiments included iPSCs cultured for 24 and 37 days, but those cultured for 17 days prior to their differentiation into dopaminergic neurons were markedly superior, capable of surviving in greater numbers and sending out their branches over long distances. “That’s important,” Kordower says, “because they’re going to have to grow long distances in the larger human brain and we now know that these cells are capable of doing that.”

    Rats treated with the 17-day iPSCs showed remarkable recovery from the motor symptoms of Parkinson’s disease. The study further demonstrates that this effect is dose dependent. When a small number of iPSCs were grafted into the animal brain, recovery was negligible, but a large complement of cells produced more profuse neural branching, and complete reversal of Parkinson’s symptoms.

    The initial clinical trial will apply iPSC therapy to a group of Parkinson’s patients bearing a particular genetic mutation, known as a Parkin mutation. Such patients suffer from the typical symptoms of motor dysfunction found in general or idiopathic Parkinson’s, but do not suffer from cognitive decline or dementia. This cohort of patients provides an ideal testing ground for cell replacement therapy. If the treatment is effective, larger trials will follow, applying the strategy to the version of Parkinson’s affecting most patients stricken with the disease.

    Further, the treatment could potentially be combined with existing therapies to treat Parkinson’s disease. Once the brain has been seeded with dopamine-producing replacement cells, lower doses of drugs like L-DOPA could be used, mitigating side effects, and enhancing beneficial results.

    The research sets the stage for the replacement of damaged or dead neurons with fresh cells for a broad range of devastating diseases.

    “Patients with Huntington’s disease or multiple system atrophy or even Alzheimer’s disease could be treated in this way for specific aspects of the disease process,” Kordower says.

    Related



    Original Source Link

    Share. Facebook Twitter Pinterest LinkedIn WhatsApp Email Reddit Telegram
    Previous ArticleLegend (& Master) Exodus Garden 2A Lost Sector Guide
    Next Article BVNK grabs $40 million for its crypto banking services – TechCrunch

    RELATED POSTS

    The EPA Will Likely Gut Team That Studies Health Risks From Chemicals

    May 13, 2025

    Ways To Cope When Your Child Gets A Life-Altering Diagnosis

    May 13, 2025

    Alien megastructures would likely self-destruct before we spot them

    May 12, 2025

    Intelligence on Earth Evolved Independently at Least Twice

    May 12, 2025

    Climate Change Will Cause a Lifetime of Extreme Heat for Today’s Children

    May 11, 2025

    Does intermittent fasting improve gut health? Why it’s hard to say

    May 11, 2025
    latest posts

    New Book Details Orange County Punk Scene

    A new book about the history of the vaunted Orange Country punk scene is hitting…

    Microsoft began its largest mass layoff in years after its CFO said the company is ‘reducing layers with fewer managers’

    May 13, 2025

    Stocks Soar After Temporary Tariff Reduction Between U.S., China

    May 13, 2025

    Secrets of great McDonald’s coffee, plus two fishermen making record-breaking catch

    May 13, 2025

    Vertical Aerospace has a plan to capitalize on Europe’s defense tech moment

    May 13, 2025

    The EPA Will Likely Gut Team That Studies Health Risks From Chemicals

    May 13, 2025

    7 Times Carrie Was A Terrible Friend On Sex And The City

    May 13, 2025
    Categories
    • Books (513)
    • Business (5,416)
    • Film (5,354)
    • Lifestyle (3,459)
    • Music (5,408)
    • Politics (5,402)
    • Science (4,765)
    • Technology (5,351)
    • Television (5,027)
    • Uncategorized (1)
    • US News (5,405)
    popular posts

    Trump Busted Illegally Shaking Down His Business Partner For Melania

    Trump tried to shake down the co-founder of his media company to get Melania Trump…

    Sony PlayStation 5 Console (Disc Edition) Available for $499.99 Shipped by Invitation at Amazon

    June 2, 2022

    How to Protect Your Kids From Adult Content—Without Censorship

    February 24, 2023

    No, You Aren't Getting a Bonus. Your Company Is Just Testing You.

    October 11, 2023
    Archives
    Browse By Category
    • Books (513)
    • Business (5,416)
    • Film (5,354)
    • Lifestyle (3,459)
    • Music (5,408)
    • Politics (5,402)
    • Science (4,765)
    • Technology (5,351)
    • Television (5,027)
    • Uncategorized (1)
    • US News (5,405)
    About Us

    We are a creativity led international team with a digital soul. Our work is a custom built by the storytellers and strategists with a flair for exploiting the latest advancements in media and technology.

    Most of all, we stand behind our ideas and believe in creativity as the most powerful force in business.

    What makes us Different

    We care. We collaborate. We do great work. And we do it with a smile, because we’re pretty damn excited to do what we do. If you would like details on what else we can do visit out Contact page.

    Our Picks

    The EPA Will Likely Gut Team That Studies Health Risks From Chemicals

    May 13, 2025

    7 Times Carrie Was A Terrible Friend On Sex And The City

    May 13, 2025

    He ‘was a blast’ and ‘gave so much to the show’

    May 13, 2025
    © 2025 Beverly Hills Examiner. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms & Conditions and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT